
SYSTEM WIDE
TRACING AND
PROFILING IN LINUX
Nadav Amit

Agenda

• System counters inspection

• Profiling with Linux perf tool

•  Tracing using ftrace

Disclaimer
•  Introductory level presentation

• We are not going to cover many tools

• We are not going to get deep into the implementation of

the tools

•  I am not an expert on many of the issues

Collect Statistics
•  First step in analyzing the system behavior

• Option 1: Resource statistics tools
•  iostat, vmstat, netstat, ifstat
•  dstat

Examples:
•  dstat
•  dstat --udp --tcp --socket
•  dstat --vm --aio

dstat --vm --aio

dstat --udp --tcp --socket

Watch system behavior online
• Option 2: Sample the counter

•  top
•  Use –H switch for thread specific
•  Use ‘f’ to choose additional fields: page faults, last used processor
•  Use ‘1’ to turn off cumulative mode

•  iotop

•  Remember to run as sudoer

top

Inspect Raw Counters
• Option 3: Go to the raw counters

•  General
•  /proc/stat
•  /proc/meminfo
•  /proc/interrupts

•  Process specific
•  /proc/[pid]/statm – process memory
•  /proc/[pid]/stat – process execution times
•  /proc/[pid]/status – human readable

•  Device specific
•  /sys/block/[dev]/stat
•  /proc/dev/net

•  Hardware
•  smartctl

/proc/interrupts

/sys/block/[dev]/stat
Name units description
---- ----- -----------
read I/Os requests number of read I/Os processed
read merges requests number of read I/Os merged with in-queue I/O
read sectors sectors number of sectors read
read ticks milliseconds total wait time for read requests
write I/Os requests number of write I/Os processed
write merges requests number of write I/Os merged with in-queue I/O
write sectors sectors number of sectors written
write ticks milliseconds total wait time for write requests
in_flight requests number of I/Os currently in flight
io_ticks milliseconds total time this block device has been active
time_in_queue milliseconds total wait time for all requests

•  Sometimes this description are insufficient and you should look at the code

x86 Hardware Debugging/Profiling
•  Debug registers (breakpoints)

•  Performance Counters
•  Cores (some support anythread)
•  Uncore (shared subsystems, e.g. L3, QPI)
•  Offcore (e.g., snoop information, sw prefetching)

•  Precise Event Based Sampling (PEBS)

•  More

•  Last Branch Store
•  Last Branch Records
•  Last Exception Records
•  Non-precise Event Based Sampling

•  Using this facilities directly is difficult (and usually privileged)

Linux Perf Tool
• Can instrument CPU performance counters, tracepoints,

kprobes, and uprobes (dynamic tracing)
• Capable of lightweight profiling
•  Included in the Linux kernel, under tools/perf
•  Frequently updated and enhanced

• But it can be more friendly

• Alternatives
•  oprofile – similar to perf, reportedly less stable
•  gprof – rebuilds your code, changes behavior

Installing Perf Tool
•  Install package linux-tools-generic
•  If you use custom kernel, make tools/perf

•  There are many dependencies that add functionality
•  Some distributions do not build the package with all dependecies
•  Install libunwind for call-graph tracing before building

• Some counters are only accessible to privileged user
•  You can tweak /proc/sys/kernel/perf_event_paranoid:

•  -1 - Not paranoid at all
•  0 - Disallow raw tracepoint access for unpriv
•  1 - Disallow cpu events for unpriv
•  2 - Disallow kernel profiling for unpriv

perf stat
•  Lists the supported events

perf stat (2)

•  To get tracepoints and global counters use privileged user
(e.g., sudo ./perf …)

Monitoring Hardware Events using Perf
•  There are common “hardware events”

•  Those are aliases to performance counters

• When in doubt (or need something else) sample the raw
counters

• Note that their accuracy is questionable

• Choosing a counter
•  Intel Software Development Manual
•  libpfm4

Performance Counters Listing in SDM

UMask = 0FH
Event Select = 27H

Uncore Events

Performance Counters Listing using
libpfm
•  Install the package libpfm4 sources

•  apt-get source libpfm4
•  make
•  cd examples
•  make
•  ./showevtinfo

•  libpfm – running examples/showevtinfo

•  sudo perf stat -e r13c -a sleep 1

Monitoring Hardware Counters

UMask = 01H
Event Select = 3CH

Hardware Counters Limitations
•  The system has limited number of hardware performance

counters.
•  If you exceed them, perf would arbitrate

./perf stat -e cache-misses  
-e cache-references -e cpu-cycles -e dTLB-
loads -e iTLB-loads -a -- sleep 1"

Software Events
• Perdefined software events can be monitored

•  perf stat -e minor-faults -- ls"

•  perf stat -e minor-faults
-a -A -- ls  

•  In many cases you would just run
`sleep [X]` as your process for the
duration you want to sample

• Use -x, for comma delimited file

system-wide Do not
aggregate

across CPUs

Event Modifiers
• You can tell when the event counter should take place

•  perf stat -e minor-faults:u  
-e minor-faults:k -- ls"

Recording
• Recording and

reporting is possible

•  perf record -e
minor-faults -g
-- ls  
"

•  perf report"

call-graph
recording

Profiling your Application
•  For analysis which program/function should be optimized:

•  perf report --sort comm,dso,symbol"

• Build your program with -ggdb flag to get debug
information and being able to annotate it

• Don’t build with -fomit-frame-pointer (i.e., disable most
optimizations)

Annotating the Source
• You can use `perf

annotate [func]` or
`perf report` to use
annotation facilities

• You can extract
vmlinux and use
-k [vmlinux]

Annotating the Source (2)
• You can use extract-vmlinux script to extract vmlinux

•  Personally – It didn’t work for me

•  If you want debugging of glibc
•  Install the debug package
•  Install the dev sources

Creating Trace Points
•  You can create your own trace-points (but not likely get them upstream)
•  See and include linux/tracepoint.h

Usage

Memory accesses sampling
• Memory access overhead
•  sudo ./perf mem record"
•  sudo ./perf mem report"
• Use -g to generate call-graph

Other perf features

Guest events
 • You can record guest events from the host

•  Only HW counters are supported

•  First copy the guest symbols and modules to the host
•  # ssh guest "cat /proc/kallsyms" > /tmp/guest.kallsyms
•  # ssh guest "cat /proc/modules" > /tmp/guest.modules

•  Then run:
•  perf kvm --host --guest --guestkallsyms=/tmp/guest.kallsyms --

guestmodules=/tmp/guest.modules record –a
•  perf kvm --guestkallsyms=/tmp/guest.kallsyms --guestmodules=/

tmp/guest.modules --guest report

Ftrace
•  Tracing capability in the Linux kernel

• Enable by including in the config:

•  CONFIG_FUNCTION_TRACER=Y
•  CONFIG_FUNCTION_GRAPH_TRACER=Y
•  CONFIG_STACK_TRACE=Y
•  CONFIG_DYNAMIC_FTRACE=Y

•  If you are lazy use trace-cmd wrapper application instead

of everything shown in next slides

• You may need to mount the debugfs system
•  mount -t debugfs nodev /sys/kernel/debug

Tracers
• Go into tracing directory (/sys/kernel/debug/tracing)
cat available_tracers "
blk mmiotrace function_graph wakeup_dl
wakeup_rt wakeup function nop"

nop tracer
• Hierarchy of events is based in /sys/kernel/debug/tracing
• You can enable a subset

•  For example `echo 1 > /sys/kernel/debug/tracing/events/irq`

•  Then enable tracing
•  echo 1 > /sys/kernel/debug/tracing/tracing_on

•  To clear the trace
•  echo > /sys/kernel/debug/tracing/trace

•  To see the trace
•  cat /sys/kernel/debug/tracing/trace
•  Consuming read: `cat /sys/kernel/debug/tracing/trace_pipe`

echo 1 > /sys/kernel/debug/tracing/events/irq

Writing to the Trace from Kernel
• Use trace_printk(…) instead of printk

• Why not printk?
•  Changes scheduling
•  Slow
•  Harder to tell order with trace messages

•  trace_printk will print the calling function on the stack
•  So it is inconsistent with the actual function if it is inlines

Snapshot; CPU Buffers
• Reading the buffer can cause events to be lost
• You can use snapshot instead:

•  echo 1 > snapshot (allocates spare buffer and clears it)
•  cat snapshot"
•  If done – echo 0 > snapshot (free the buffer)

• Per CPU buffers exist in per_cpu directory
•  Note that their data is not interleaved in the global trace

uprobes
•  perf probe -x /lib/x86_64-linux-gnu/libc.so.6 malloc

•  perf record -g -e probe_libc:malloc -aR sleep 10
•  perf report

Collect all
raw counters

Function tracer
•  echo ‘function > current_tracer’

Setting ftrace filter
•  echo ‘*balance*’ > set_ftrace_filter
•  cat trace

Tracing Specific Module
•  echo :mod:nfs > set_ftrace_filter
•  cat trace

Set Tracing Trigger
•  echo > trace
•  echo 0 > tracing_on
•  echo nf_nat_ipv4_in:traceon > set_ftrace_filter

Function graph tracer
•  echo ‘function_graph’ > current_tracer

ftrace in userspace
• You can enable trace from userspace in the critical section

by writing to 1 to tracing_on file
•  Examples on LWN

• Record userspace events in the trace
•  echo hello world > trace_marker

Controlling ftrace from the kernel
• You can disable/enable tracing in the kernel

•  tracing_on() and tracing_off()

• Dumping ftrace to console
•  echo 1 > /proc/sys/kernel/ftrace_dump_on_oops
•  Can also be set as kernel parameter (ftrace_dump_on_oops)
•  You can initiate dump using ftrace_dump()
•  [instead of dump_stack()]

Other useful features
• CPU mask for tracing (tracing_cpumask)
• Change buffer sizes (buffer_size_kb and

buffer_size_total_kb)

Ftrace clocks
•  trace_clock - change the clock used to order events

•  local: Per cpu clock but may not be synced across CPUs
•  global: Synced across CPUs but slows tracing down.
•  counter: Not a clock, but just an increment
•  uptime: Jiffy counter from time of boot
•  perf: Same clock that perf events use
•  x86-tsc: TSC cycle counter

References
•  https://perf.wiki.kernel.org/index.php/Main_Page
•  http://www.linux-kvm.org/page/Perf_events
•  http://lwn.net/Articles/365835/
•  http://lwn.net/Articles/366796/
• Documentation/trace/ftrace.txt
• Documentation/trace/uprobetracer.txt
• Documentation/trace/tracepoints.txt

Backup

PEBS

Libpfm
•  sudo perf stat -e r13c -a sleep 1

